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A vortex sheet modelling of boundary-layer noise 
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I n  this paper we describe a simple way of modelling boundary-layer effects in analytical 
flow noise studies. We develop an exact analogy between the real flow and one in 
which there is a step velocity profile. This profile is intended to model a boundary 
layer in an idealized way and we recognize it in our Green’s function for the problem. 
We insist that the Green’s function is bounded, a step that makes it non-causal and 
similar to  those used in recent jet-noise analogies. We derive an expression for the 
induced pressure which consists of surface and volume terms, just as in Lighthill’s 
theory, but, because both contain elements to be evaluated in future time, we argue 
that the turbulence must be able to respond to linear surface stimulus and avoid the 
otherwise inevitable violation of causality. This novel feature distinguishes our 
analysis from applications of Lighthill’s theory to boundary-layer-induced noise. The 
response of the turbulence may be large when the surface is driven at  low boundary- 
layer Strouhal number. But i t  is negligible a t  high Strouhal number, and in that limit 
the surface terms are found to depend only on the instantaneous boundary geometry 
and its rate of change. This leads to a simple expression for ‘boundary-layer fluid 
loading ’, in which the finite boundary-layer scale emerges explicitly. To illustrate the 
physical consequences of this result, we use it to estimate the impedance of a baffled 
piston vibrating beneath a boundary layer. Potential theory predicts that flow should 
destabilize the piston motion while experiments usually indicate the reverse. We find 
that the boundary layer is responsible for the discrepancy and that experimentally 
observed behaviour is predicted quite reasonably by our model. 

1. Introduction 
Mean flow effects rarely feature in analytical studies of turbulent-boundary-layer 

noise. The mean flow is often assumed to be irrelevant if it is a t  low Mach number, and 
the noise is estimated by modelling the boundary layer as a region of turbulence 
adjacent to a supporting surface embedded in an otherwise stationary acoustic 
medium (Lighthill 1952; Powell 1960; Ffowcs Williams 1965, 1966, 1972). 

By ignoring the mean flow, models such as these overlook some important effects. 
For instance, the impedance of acoustic liners such as those used to silence noisy 
flow ducts is known to be influenced by the adjacent mean flow, and that can make it 
difficult to  estimate from measurements taken in static tests a liner’s likely effective- 
ness in an application (Meyer, Mechel & Kurtze 1958; Mechell9GO). If the flow induces 
the instability of the surface that supports it, it introduces a type of surface motion 
altogether more violent than any found in models that neglect it. Benjamin (1964) 
has shown how flow can destabilize a homogeneous, elastic surface, and Ffowcs 
Williams & Lovely (1975) have since described how potential flow destabilizes a 
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spring-mounted piston set in a rigid, plane baffle. In  that case the motion is divergent 
if the flow-induced suction on the proud piston exceeds the restoring force offered by 
the spring. Flow-induced instabilities such as these could well be extremely noisy, but 
analytical difficulties have so far defeated attempts to find out whether they are 
(Lovely 1974). 

Some important acoustical consequences of introducing a mean flow can of course 
be brought out explicitly by applying the appropriate form of Lighthill’s (1952) 
acoustic analogy, when; instead of developing the theory of a medium at rest, the 
medium is given uniform motion and the flow represented as a uniform potential flow 
with slip over the surface that supports it.  This was the view that Ffowcs Williams & 
Lovely took. Boundary-layer effects are ignored, but that is not obviously serious 
because the modelling is correct over most of the flow and fails only within a thin 
layer adjacent to the surface. 

In  fact a suitable modelling of that  layer is more important than i t  appears, largely 
because conditions there have such a major influence on the pressures on the adjacent 
surface, pressures that play an important part in determining how that surface will 
respond when it  is excited. Ffowcs Williams & Lovely illustrated the basic weakness of 
potential theory when they showed that, according to  the theory’s linearized form, the 
flow-induced force on a sharp-edged, baffled piston displaced from the baffle plane is 
infinite. Analysis with no linearizing assumptions reveals that the force is actually 
finite, but that its magnitude can be changed markedly by making trivial alterations 
to the piston edge geometry. This type of behaviour, where the pressures reached at 
the piston corners are limited only by how sharp the corners are, is a characteristic of 
a potential modelling that would surely not be expected in a real flow, where the piston 
is submerged beneath a relatively stagnant boundary layer. Indeed, there are serious 
doubts that even the sign of the flow-induced force is correctly predicted by the 
potential modelling. The dynamics of Ffowcs Williams & Lovely’s spring-mounted 
piston are analogous to  those of a baffled Helmholtz resonator of the type used in the 
construction of flow duct acoustic liners, and there are now a number of reported 
instances in which, far from reducing the natural frequency of such a resonator, as 
would be expected from potential-theory results, the flow actually increases i t  (see, 
for example, Meyer et al. 1958; Mechel 1960; Panton & Miller 1975; Anderson 1977) .  
There is evidently a pressing need for a more representative theory. The boundary 
layer plays a vital role, but i t  is one that cannot be discerned from a straightforward 
application of Lighthill’s theory. 

In  this paper we explore these distinctive boundary-layer features through an 
analysis which models the boundary layer explicitly, albeit in an idealized way. We 
develop an exact analogy between the real flow and one in which the mean velocity is 
zero at  and up to a finite distance from the supporting boundary. Beyond that, the 
mean velocity is taken to be constant and equal to the free-stream velocity of the real 
flow. Consequently, our model recognizes that there is a buffer zone between the 
supporting surface and the main flow, a buffer that  effectively cushions the flow from 
small-amplitude movements of the boundary. 

The analysis has much in common with recent jet noise analogies in which the 
generation of turbulence-induced sound is modelled in terms of sources positioned next 
to a vortex sheet (Ffowcs Williams 1974; Mani 1976; Dowling, Ffowcs Williams & 
Goldstein 1978). Our step profile is without doubt the simplest conceivable model of a 
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boundary layer, but it may be thought to be a somewhat nai’ve one. More intuitively 
plausible schemes based on smoother mean shear profiles could certainly be devised, 
but they are less obviously to be preferred to the somewhat cruder model that we are 
proposing than might a t  first be supposed. For the instantaneous velocity field in a 
turbulent boundary layer is far from being a small perturbation of the mean, parti- 
cularly in the boundary layer’s near-surface equilibrium layer, where the fluctuating 
components of velocity amount to some 20-30% of the local mean values (see Townsend 
1976, pp. 260 and 291). The velocity profile with which the surface interacts a t  any 
instant is unlikely ever to resemble the mean. Indeed, it is the relatively large velocity 
fluctuations within a boundary layer that make possible the ‘local ’ Kelvin-Helmholtz 
instabilities that induce the bursts and sweeps that maintain the turbulent field, 
instabilities that are lost in a modelling based on a gradual mean shear profile if the 
chosen profile is stable to  small disturbances (and the mean profiles encountered in 
practice usually are (Landahll967)). Instabilities could be introduced by the deliberate 
choice of an unstable mean profile, of course, but the profile selection would inevitably 
be a somewhat arbitrary procedure. I n  the absence of compelling reasons to  the 
contrary, the best choice of profile under these circumstances may well be the one that 
admits the boundary layer’s existence in the simplest possible way. 

Aside from its relative simplicity, the vortex sheet model has a further attraction, 
because aeroacoustic theories that identify sound sources with inhomogeneous 
departures from a mean profile also suffer from fundamental, and so far unresolved, 
difficulties of principle. These schemes follow in essentials the analysis first developed 
by Lilley ( 1  974) by arranging the equations of motion in a way that collects linear terms 
on the left-hand side and nonlinear fluctuating terms on the right-hand side. The 
right-hand-side terms are identified as sources of sound, but it is difficult to specify 
rigorously the field that those sources induce, because non-trivial solutions exist that 
satisfy the left-hand side though they do not rely on non-zero right-hand-side terms 
for their existence. Consequently, to obtain practical results of the type reported by 
Morfey & Tester (1976), which showed encouraging agreement with experiment, 
certain elements of the solution have to be discarded, a procedure that is difficuIt to  
justify. By contrast, vortex sheet analogies are based, like Lighthill’s theory, on simple 
wave equations for which uniqueness theorems provide the essential justification for 
identifying terms that appear on the right-hand side as sources of sound (Dowling 
et al. 1978). 

Only time will tell whether one particular model profile, supported by rigorous 
analytical procedures, can be shown to be superior in all respects to the alternatives. 
But for the present, the success achieved by vortex sheet analogies in estimating jet 
noise certainly makes the idea of exploring how far similar ideas might be exploited 
in a boundary-layer application a very attractive one. That is essentially what this 
paper is about. Although in fact we develop our analogy for the case of an incom- 
pressible fluid, we keep a firm eye on aeroacoustic applications. Some of the analogy’s 
most important distinctive features turn out to  be connected with the incompressible 
part of the flow and are thus most easily studied in this simplified theory. This is not 
to underrate in any way the importance of fluid compressibility-related effects, but 
they are wholly additional to those we report here. 

There is an unstabIe ‘vortex sheet ’ in our model, so that we face a choice between 
the causal, unbounded, or the non-causal, bounded Green’s function in the analysis. 
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I n  fact we require the bounded Green’s function that does not conform to strict 
causality, and in consequence our integral expression for the induced pressure contains 
elements that are to be evaluated over all time, past and future. The integrals in the 
jet noise analogies are of course of the same type, and they invite the simple inter- 
pretation, apparently obviously wrong, that a source can be ‘heard ’ before i t  has fired. 
Jet flow sources, though, are defined to be in turbulence formed at  the unstable 
interface between stationary and moving fluids, and the motion of individual turbulent 
eddies not only generates sound ; i t  also triggers off further instability which results in 
yet more turbulence later on. It is this noisy evolution of turbulence that appears as 
a precursor to the actual turbulent sources, and it is found in all acoustic analogies 
which include the influence of an unstable mean flow. This rather unusual source 
structure does not seriously hamper interpretation of the theory in applications to 
free jets, and apparently significant new dimensional laws which characterize the 
sound sources and their radiation directivity can be deduced quite simply (Mani 
1976; Dowling et al. 1978). 

In  our boundary-layer application, where surface terms play a key role, the causality 
question is far more important. I ts  mere existence is a t  first sight surprising because 
it is unusual in incompressible flow studies of this type for there to  be any time 
dependence at  all. I n  incompressible flow the acoustic analogy formally reduces to  
Poisson’s equation, solutions to  which are normally determined by the instantaneous 
flow and boundary conditions. The main structure in our results comes from the 
important dynamical features that are introduced by the instabilities of the turbulence- 
generating shear flow. Surface and volume terms cannot now be handled separately as 
they usually are in applications of Lighthill’s theory, where the turbulent field is 
taken, e.g. in Curle (1955), to be fixed irrespective of any boundary movement in the 
vicinity. To assume this in our non-causal analogy is to  imply that the field at any 
instant can be influenced by an arbitrary boundary movement later on. That would be 
nonsense. Causality of the complete problem requires that the sum of the surface and 
turbulence source terms that have to be evaluated in future time must be absolutely 
fixed. The turbulence must therefore be determined to some extent by surface motion. 
This prediction, that turbulence must respond to  linear surface forcing, is a hint that  
boundary-layer turbulence may well respond to  applied stimuli in a way essentially 
similar to that in which jets are now known to do (Moore 1977). 

We give particular emphasis in this paper to situations in which the boundary 
movements are imposed externally, and try to estimate the pressure induced on the 
surface. In  doing so we examine the turbulence response that the boundary movements 
induce and consider under what circumstances that response is important, and when it 
is negligible. We find that only when there are grounds for supposing that the boundary 
movements do not perturb the turbulence is it possible to give a simple description of 
fluid-loading effects. 

The turbulence is likely to respond vigorously when the flow-supporting boundary 
oscillates a t  frequencies low in comparison with the boundary layer’s characteristic 
frequency, particularly when the flow is stimulated by surface wave elements that  
share the phase speed of its instabilities. But the turbulence is effectively decoupled 
from the surface a t  high Strouhal number, and in this limit the various terms in the 
integral expression for the pressure can be given a familiar interpretation. The volume 
terms are taken to  represent the turbulence field, as usual, and they still contain 
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elements in future time, but the surface terms now depend only on the geometry of the 
surface and its time derivatives at  the observation time. We interpret these surface 
terms as boundary-layer fluid loading. They have a distinctive structure. 

As a definite illustration of the field to be expected when boundary-layer effects are 
admitted, we apply this result to Ffowcs Williams & Lovely's (1975) problem of the 
estimation of the impedance of a baffled piston under a boundary layer. The results 
confirm their prediction that in the large-piston limit the flow-induced piston force is 
a suction limited by the finite boundary-layer scale. But the most interesting results 
concern pistons of somewhat smaller diameter. For these pistons which, incidentally, 
cover almost the entire range of sizes which might be used to model the cavity reso- 
nators used in acoustic liners, the mean flow-induced force has a sign opposite to that 
found by Ffowcs Williams & Lovely. The flow induces a compressive force on a piston 
standing proud of its baffle, a restoring force which tends to drive the piston back to 
a position flush with the baffle. This force is equivalent to a stiffness, and would induce 
an increase in the resonance frequency of a spring-mounted piston. This result is 
actually consistent with the observed behaviour of acoustic liners under flow and, 
furthermore, the resonance frequency shifts that are found in practice are in reasonable 
agreement with what we would anticipate from our model. 

2. The flow 
We consider a situation in which a turbulent boundary layer is formed a t  the inter- 

face between a steady flow and an almost planar supporting surface as shown in 
figure 1. The surface is in a state of small-amplitude vibration, driven either by the flow 
or by externally applied stresses, and we wish to estimate the induced pressure in the 
flow. 

Mean flow velocity U ,  - 
( -Turbulent boundary 

layer 

Ir' .I d f ' bc 
Supporting surface weakly 
disturbed by an amount I, 
from the X 3  = 0 plane 

FIGURE 1 .  A slightly non-planar flexible surface supports a uniform mean flow 
and is separated from it by a turbulent boundary layer. 

3. Lighthill's theory 
In incompressible flow the pressure satisfies a Poisson equation 
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where p is the density and ui the velocity. This equation can be ‘solved’ by using the 
corresponding Green’s function G which satisfies 

V:G = S(X-Y). 

G is defined to be sufficiently well behaved a t  infinity for repeated integration by 
parts, so that the pressure within the fluid-filled volume V can be expressed in terms 
of the Reynolds-stress distribut,ion within the volume and the boundary conditions 
at the supporting surface, C: 

dS. an at 
The suffix n denotes the direction of the outward-facing normal and viscous terms are 
assumed negligible. 

The compressible form of this equation is the starting point for many analytical 
studies of boundary-layer noise (Powell 1960; Ffowcs Williams 1965, 1966, 1972; 
Crighton 1968). The volume t,erms are assumed to provide a descript,ion of a turbulent 
field that is taken to be fixed irrespective of conditions at  the supporting boundary. 
Boundary effects are to be inferred from the surface terms. But the volume terms 
contain also an implicit description of mean flow effects in an extensive linear distri- 
bution of sources and the scheme of analysis cannot distinguish between those effects 
and genuine turbulence. A different approach is needed to separate the two. 

An obvious way of minimizing the importance of the steady flow-related volume 
terms is to develop the analysis in terms of the difference u; = ui - U, Si, between the 
actual velocity field ui and the steady velocity U,Si, remote from the surface, a 
procedure that leads to the expression 

D/Dt  signifies the convective time derivative defined by 

~a a --+q-. E t  - at ay, 
Because the Reynolds stress is now based on the difference between the actual velocity 
and that of the steady flow remote from the boundary, extensive volume terms linear 
in the fluctuating velocity field are impossible, and the regions of significant Reynolds 
stress are more obviously associated with those of the boundary-layer turbulence. 
Mean flow effects have a separate identity because they are now described by surface 
terms, and indeed equation (3.2) is the only formulation in which those effects can be 
brought out explicitly. Boundary-layer effects, though, remain implicit; now they are 
inextricably linked with the volume terms that describe the turbulence, in the form 
of linear elements that have to be evaluated in the region near to the supporting 
surface. 

4. The boundary-layer modelling 
The object of the modelling described in the pages which follow is to draw together 

both these formulations of the incompressible version of Lighthill’s theory so that the 
best features of each are built into a single framework in which the existence of an 
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Flow-supporting 
boundary C Region 1, H I  = 1 

H = l  

FIGURE 2. The flow division used in the boundary-layer modelling. H ,  = 1 in region 2 and the 
analysis is based on the difference ui between the actual velocity ui and that of the flow remote 
from the boundary, U,S,,. HI-= 1 in region 1 whcrc the analysis is based on the actual velocity 
field, i,. I n  the rest of space H = 1. 

idealized boundary layer is made quite explicit. We divide the flow into two regions, 
1 and 2 ,  as shown in figure 2 ,  and then obtain expressions for the pressure in each 
region using the form of Lighthill's theory which is most appropriate to that region. 

I n  the near-surface region 1, we develop the analysis in terms of the actual velocity 
field ui. In  region 2, which comprises the flow more remote from the surface where the 
velocity ultimately reaches the steady value U1Si1, we work in terms of the velocity 
difference u; = ui - U, 8tl. Each region is identified with a corresponding Heaviside 
function defined to be unity within the region and zero outside it. Hl defines region 1 
and H, region 2,  so that the volume for which Hl+ H, = H = 1 defines the whole 
space occupied by the fluid. These Heaviside functions are chosen to be constant on 
any one fluid particle, so that particles do not cross from one region of the fluid to the 
other. S marks the boundary between the two fluid regions and C that between the 
fluid and the rest of space. 

The pressure within eaeh region is given in terms of the Reynolds stress within the 
fluid and the pressure and normal particle velocity a t  the region's boundaries by 
Goldstein (1977, p. l66),  so that, in our problem, the pressure in region 1 is given by 

where G, and G, are the two elements of the Green's function, G, 

and they satisfy Poisson equations in their respective regions: 

The pressure at  any point in the flow, H p ( x ,  t ) ,  is equal to the sum of (4.1) and (4.2), 
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and we can write the result in a slightly simplified form because of our stipulation 
that Hl and H2 are associated with individual fluid particles: 

DH, DG, aH, aG, 
or a7 a7 

Here B is a further Heaviside function, defined to be unity in the space not occupied 
by the fluid, and as before we have neglected viscous terms. 

The linear surface terms on S depend on the field induced by both the turbulence 
and the surface vibration, so that their estimation is likely to be both difficult, and 
extremely sensitive to errors. We therefore eliminate them by imposing constraints on 
the Green's function and require that 

and 

(4.4) 

(4.5) 

Equation (4.4) is satisfied by the continuity of normal gradient 

aG, aH, aG, aH2 

while (4.5), which with a sufficiently good Green's function we can integrate by part's 
into the form 

--=-- 
aYi a ~ i  a ~ i  a ~ i  ' 

imposes a jump in the Green's function such t'hat 

a z q  D~CT' ,  -= -  
ar2 Or2 

in region 2. 
These constraints help specify the Green's function and allow equation (4.3) to be 

written in a simplified form. The pressure is expressed as the sum of volume terms to  
be evaluated over the whole flow and surface terms on the physical supporting 
boundary : 

where 

The volume terms in this equation are free of linear elements both in the turbulence- 
free flow beyond the boundary layer and in the region near to the supporting surface, 
so that this equation suffers from neit'her of the drawbacks in tjhe two formulations of 
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Lighthill’s theory, and yet the volume terms continue to provide a description of the 
turbulent velocity fluctuations. Thus the existence of a rudimentary boundary layer 
is now recognized explicitly in the Green’s function, though that is still not completely 
specified. Further constraints can be imposed at the bounding surface of the flow. 

Though the terms in equation (4.6) have a familiar form, they must in fact be 
interpreted very carefully because the constraints we have applied to  the Green’s 
function have already given i t  considerable structure. We now consider those con- 
straints more closely and examine their consequences when the formal and exact 
analogy of equation (4.6) is used to calculate the pressure field in incompressible 
boundary-layer flow. 

5. The Green’s function - its similarity to the vortex sheet Green’s function 
The two elements of the Green’s function, G, satisfy Poisson equations, 

to  which solutions must be chosen so that, across S the derivatives normal to  S are 
continuous, 

and such that 

throughout region 2. We may constrain either G,, or aG,/anc at the supporting 
boundary, C, as a third condition [3], while the fourth [4] condition implied in the 
analysis requires that G(y, T ) X ,  t )  -+ 0 as Iy, 71 +m. 

Our immediate interest concerns the jump conditions [l] and [2] to be satisfied 
across S. The second of them may not appear to be a surface condition, but its parent,- 
age, revealed by equation (4.5), shows that it is, Here we shall ensure that condition 
[2] is satisfied specifically a t  S, and will merely assert that it holds throughout region 2, 
a step that is permissible because G, is undefined in that region and so can be assigned 
any value there. Our jump conditions do, in fact, have essentially the same structure 
as those used by Dowling et al. (1978) in their jet noise modelling (see their equation 

There are obvious difficulties connected with the conditions at  the flow-dividing 
interface because the exact position of that interface is impossible to  specify. The 
distance between the interface and the flow-supporting boundary must be related in 
some way to the physical boundary-layer scale, though the amount by which the 
mean flow is displaced from the surface will usually be much exaggerated by taking the 
interface height as the boundary-layer thickness. We shall argue later that  the buffer 
depth may reasonably be identified with the boundary layer’s much smaller displace- 
ment thickness. 

For the present we need to specify the interface geometry only in general terms, and 
in a way that renders the analysis tractable. Accordingly we shall assume that the 
interface is only weakly disturbed from a mean plane that is defined to  be a t  a fixed 
distance d from the undisturbed flow-supporting boundary plane y3 = 0. We can then 

(3 .1) ) .  
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Mean velocity U ,  

Y 3  

Zero mean velocity 

Y l  .--- I 
+ L  - 

FIGURE 3. In  this hypothetical situation, a flow with unperturbed mean velocity U occupies 
y3 > d + CSu; quiescent fluid occupies Cc < y3 < d + CSL. 

linearize the boundary conditions to be applied on S and apply them instead at  the 
mean plane. 

Now, to see that the jump conditions [l] and [2] have the same structure as the 
jump conditions across a vortex sheet, consider figure 3, which shows a hypothetical 
situation in which a potential flow is, like our boundary-layer modelling, divided into 
two regions. In one, at  distances y3 > d + cSu the unperturbed flow velocity is UISil, 
while in the other, Q < y3 < d + CsL, the mean velocity is zero. A discontinuous sheet 
separates the two flow regions and the sheet's upper and lower surfaces are displaced 
in the y,-direction by small amounts CSv and CsL respectively. Like a real flow, this 
one is supported on a boundary which is assumed to be only weakly disturbed by an 
amount Q from its mean position in the y3 = 0 plane. 

The potential field within each region of this hypothetical flow is related to the 
boundary displacements in the usual way. If the flow-dividing interface is to represent 
a vortex sheet then, firstly, the displacements a t  its upper and lower surfaces must be 
the same, 

CStJ = CSL (5.1) 

and, secondly, there must be no pressure discontinuity across it. 

if we write the latter in terms of a function $ defined by 
We can compare these constraints with those to be applied to our Green's function 

The jump conditions that we insist must be satisfied across S in our formal analogy 
may be written in terms of I# as 

and 
$1 = $2 (5.2) 

(5.3) 

If $ is interpreted as the fluid particle displacement in the y,-direction then (5.3) is 
actually the pressure-continuity condition and the jump conditions we impose on G 
a t  the interface S are the jump conditions across a vortex sheet. 

The Green's function may also feature the mechanical properties of the physical 
flow-support.ing surface, C ,  if G and aG/an, are appropriately consttrained there, as in 
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effect they would have to be in applications to the study of sound generation by flow 
over passive compliant surfaces (see Ffowcs Williams 1965). In the case when the 
surface motion is specified, the essential structure of Gis that of a vortex sheet boundary 
layer formed on a rigid boundary. 

There is an obvious limit to the utility of this physical picture, though, because the 
fourth condition on G demands its boundedness, and that could not be satisfied in a 
physical realization of a vortex sheet flow. A vortex sheet is unstable to disturbances 
a t  all finite wavenumbers, so that a source positioned next to it would induce a response 
which grows without limit, a result which applies also to the vortex sheet flows formed 
on flexible surfaces (see Benjamin 1964). The causal Green's functions for those flows 
are therefore unsuitable for our analysis. 

Jones (1973), Morgan (1975) and later Dowling et ul. (1978) have all observed that. 
boundedness can be ensured in exact analogies which feature unstable 'vortex sheets ' 
only by relaxing the causality condition, because only then is it possible to ensure that 
G is zero a t  both large positive and large negative values of its arguments. The use of 
this Green's function means that some of the source elements on the right-hand side 
of equation (4.6) are to be evaluated in future time, a feature that is the hallmark of 
unstable flow analogies, and one which we think has significant implications for the 
interpretation of that equation. 

6. Turbulence and the vibration of a supporting boundary may interact 
strongly 

Because the sources on the right-hand side of equation (4.6) 

(4.6 6is)  

contain elements to be evaluated in future time, that equation cannot be handled in 
the same way as the corresponding expression in Lighthill's theory. The possibility of 
a nonsensical result is made obvious when the surface vibrations are driven externally, 
the Green's function constrained such that 

- 0  
aGl aB 
aYi a ~ i  

and equation (4.6) written in the form 

The surface terms now depend only on the velocity distribution of the bounding 
surface, but equation (6.1) requires that that distribution must be specified a t  all 
times, including times later than the observation time t .  This seems absurd, because 
boundary movements are subject to independent control, and it is inconceivable that 
the induced pressure within the flow could really depend on how those movement,s are 
configured at some future time. 

The flaw in the argument is that causality restrictions do not apply to the individual 
source terms; they apply only to their sum. So, if one of the source terms is subject to 
independent control, as the surface terms in equation (6.1) clearly are, then there will 
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be no breach of causality provided that the remaining terms respond to  the control 
in such a way as to preserve the causality of the sum. That response can come only from 
the volume terms that we have taken to describe the turbulent field, so i t  is evident that 
in our analogy, unlike in Lighthill’s, i t  cannot be assumed that the ‘turbulent ’ volume 
terms remain uninfluenced by movement of the boundary. 

To see this, contrast the turbulence development in the following two situations. In  
the first, the boundary follows some prescribed non-zero vibration in the whole time 
interval from - co to + a. In  the second, the boundary vibrations are exactly the same 
up to some time t’ later than the observation time t. Thereafter the boundary is 
deliberately held rigid during the subsequent time interval from t’ to co. The pressure 
fields in both situations must be identical at time t ,  so that the source terms that 
describe the turbulence development from t’ to + co in the first case, 

when the boundary vibration is maintained for all time, must differ from those that 
oecur when the boundary is deliberately held rigid during t,hat time interval, 

say, by an amount equal to the surface source terms that occur in the vibrating surface 
case : 

These surface terms might integrate to zero in some circumstances but they will not 
do so in general. There must therefore be a turbulence response to boundary movement, 
a response that is of first order in the boundary movement. This is in marked contrast 
to conventional aeroacoustic theory, where turbulence is regarded as a fixed source of 
excitation and where i t  is assumed that the scattering effect of a boundary positioned 
adjacent to i t  can be deduced from the surface terms alone. Our analogy suggests that 
surface effects might actually be linked inextricably with changes of comparable 
importance in the turbulent field itself, so that applications of the theory to boundary- 
layer noise problems may well call for very careful interpretation. 

It would be surprising though if turbulence response were always important, and 
in a first study such as this it is natural to  try to  identify the types of boundary move- 
ment that induce the extremes of large and small response. We turn attention to these 
aspects in the next section, where we consider the development of a turbulent boundary 
layer formed on a surface whose movements we can control completely. 

7. The pressure field within a boundary layer formed on a deliberately 
forced, compliant surface 

When the boundary movements are specified independently of the flow, the appro- 
priate Green’s function is that for an instability-free vortex sheet boundary layer 
formed on a rigid, plane boundary, so that our next step is to  ca1culat.e that  Green’s 
function. 
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7.1. T h e  Green's function for  a n  instabilityyree vortex sheet boundary layer 
formed on a rigid, plane boundary 

The Green's function satisfies 

V:G, = 8 ( ~ - y ) S ( t - ~ )  in 0 < y3 < d ,  (7 .1)  

V t  G, = 8 ( x  - y )  8(t - 7) in y3 > d, (7.2) 

is subject to the constraints 

[ 2 ]  - - - - 
ar2 DzG.l 0 7 ,  

1 a t  y3 = d ,  

- 0 a t  y3 = 0, 

and we must choose the solution such that 

[4] both G, and G, are bounded. 

We t.ake Fourier transforms in (y1,y2,7) and so write equations (7 .1)  and (7.2) in 
the form 

( -lklz+<) G1, , (k ,w,y31x, t )  = &(x3-y3)eik*x+io1t. (7.31, (7.4) 
ays 

At this stage we are mainly interested in the pressure induced near the surface, so we 
will focus attention on cases in which the observation point x lies in the near-surface 
region 1 (though of course the analysis could be developed in just the same way for an 
observer positioned in the other region). Solutions 0, and 0, which satisfy (7.3) and 
(7.4) may then be written 

exp[ik.x+iwt- ( k (  \x3-y31] 
21kl 

G,(k, w, y31x, t )  = Aelklv3 + Be-lk1U3 - , 
< I  

G2(k, w,  y31x, t )  = Ceiklg3 + De-Ik1v3, 

where A ,  B, C and D are independent of y3 and are to be determined from the boundary 
conditions. By applying conditions [I], [ 2 ]  and [ 3 ] ,  and by taking inverse transforms 
in (k, w ) ,  G, and G, can be written as 

1 
G I ( Y , T J x , ~ )  = 
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x *  denotes the image of x in the plane x3 = 0. So far the evaluation of G is straight- 
forward, but now care is needed in the @-integration because that must be performed 
in such a way that G ( y , ~ l x , t ) + O  as l y , ~ (  +a. 

The relevant integral with respect to  w may be written 

+a e i d t - 7 )  dw 

-m [wZ + $( 1 - e-21ki d 1 (2Ulwklf U;k;)l’ 

and we evaluate i t  by contour integration, noting that the poles are located a t  the 
roots of w2 + $( 1 - e-2lk1 d ,  ( 2u1 wk, + uf k:) = 0. 

For all real, finite k,, there is a simple pole in each of the upper and lower halves of the 
complex w-plane, as shown in figure 4 (a).  

Because our analysis demands that G be bounded, in the integration with respect 
to w we must choose the integration contours sketched out in figure 4 ( b ) .  The required 
contours run along the real w axis and are closed in the upper or lower half planes 
according as 7 is less than or greater than t ,  so that each contour encloses one pole 
and there are no indentations. For comparison, contours that would yield the causal 
Green’s function are shown in figure 4 (c), where, in order to  ensure that G remains zero 
for 7 > t ,  the contour closed in the lower half plane must be indented so as to exclude 
the pole located within that half plane. By the same indentation that pole is located 
in the upper half plane contour and is responsible for the unbounded growth of G as 
7 -+ - co. It is this behaviour that prevents our using the causal Green’s function in 
our analogy. 

Using the integration contours indicated in figure 4 ( b ) ,  the integration with respect 
to  w in equation (7.5) may be performed, with the result 

(7 .7)  x (e-lkl (z3-113) + elk1 ( ~ 3 - ~ 3 )  + e- lkl(z3+~3) + e-Ikl (Za+lls)d2k, 

where a: = (coth ( 1  kl d ) ) i  and ,4 = +( 1 - e-,lkId). The integration with respect to w in 
equation (7.6) yields an expression for G, which has a similar structure 

G,(Y, 7)x, t )  = - - 

+ &z jm -$$ ( I  - e-zlkld) exp [ - U,P(ik,(t - 7 )  + aJk,l It - 71) + ik .  (x - y)] 

Both elements G ,  and CJ, of G contain a term 



A vortex sheet modelling of boundary-layer noise 
Im ( w )  

L r--------- 
I 
\ 

‘ \ , / 7 < ‘  

\ ‘\ 
-___._ ‘L. 

201 

----I 

I! I; Re ( w )  I 

---- lip----, - 
I1 I1 I 

#! /J 

,/ 
/ 

0 
, . 

# - 

which is the Green’s function for a half space. But they also include a more complicated 
mean-flow-related term that has non-causal time dependence. I n  this term the 
integrand rises and falls with ( t  - 71 according to 

and it is this part of G that ensures that convolution int,egrals such as (4.6) contain 
elements that have to be evaluated in future time. 
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7.2. T h e  turbulence response induced by boundary motion 
We are likely to be able to estimate the pressure induced by forced boundary motion 
only if it is described by surface terms. Volume terms describe the turbulent field and, 
if the boundary motion perturbs that field significantly, there is no guarantee that an 
accurate estimate of boundary effects can be deduced from the surface terms alone. 
Source elements that characterize the turbulence response could be important. 

We know that surface terms to be evaluated in future time must be in some way 
related to turbulence response, because we are free to configure the surface movement 
after the observation time in any way we like, without influencing the pressure at  the 
observation time, turbulence-response source terms providing the necessary cancelling 
field required to prevent what would otherwise be a violation of causality. For this 
reason i t  seems unlikely that an identification of boundary effects with surface terms 
will always be possible. 

On the other hand, i t  would be surprising if there were a significant turbulence 
response to boundary motion under all circumstances. The boundary layer has a 
definite characteristic time scale S/U,, where S is a boundary-layer length scale, and U, 
the free-stream velocity, and, if the boundary oscillations are fast on that scale, a 
significant turbulence response seems unlikely, one oscillation of the boundary being 
complete long before the boundary layer has time to  respond to  it. Consequently, 
were the boundary movements sufficiently rapid, we might expect to find that the 
surface terms would be of a type that did not suggest a significant turbulence response, 
and that i t  might indeed even be possible to write down a simple expression for the 
surface terms valid in cases where the turbulence was not perturbed. The error involved 
in approximating the surface terms in this way in any particular case might therefore 
provide a plausible means of identifying whether turbulence response is important in 
that case. 

This idea finds explicit support in our model, because although the pressure must 
in general be expressed as 

r 

a form which demands a specification of the boundary geometry a t  all times, this 
expression simplifies greatly when the boundary is driven a t  high frequency. In that 
limit, the pressure may be written as 

n 

where the boundary geometry has to be specified only a t  the observation time t. 
Surface terms that depend on the boundary geometry a t  other times can be neglected 
because they are negligible in comparison with those retained. 

At the other extreme, when the boundary is held rigid, though not necessarily flat, 
for all time, the induced pressure 

HP(X, 4 = lm [TI d3Y d7 

is independent of the detailed boundary geometry, because in that limit the surface 
terms we neglected in equation (7 .9)  cancel completely the surface terms that were 
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retained in that equation. Boundary layers formed on surfaces vibrating at  finite 
frequency must in general be dealt with by using the full expression (7.8), and it  seems 
likely that the surface-driven case will be tractable only if that exact expression can 
reasonably be approximated by equation (7.9) above. I n  that expression we have 
discarded the surface terms that depend in the main on the surface geometry a t  times 
other than the observation time because they are negligible in comparison with the 
terms retained; by discarding them we lose the requirement for a turbulence response, 
because equation (7.9) gives us no grounds for presuming that there is a turbulence 
response to  boundary movement. Therefore, a plausible procedure for estimating the 
likely significance of turbulence response is to determine the error introduced by 
writing the surface terms in the simplified form indicated in equation (7.9).  

We now consider the Green's function in more detail so that we can identify the 
characteristics of the boundary motion needed to ensure that the induced pressure is 
expressible in a form such as (7 .9) .  We focus attention on the pressure induced on the 
boundary, x3 = 0; this useful simplification does not restrict the validity of the 
conclusions reached. 

The surface terms in equation (6 .1) ,  

may be writ,ten in the linearized approximation as 

(7.10) 

The elements of G, that  contain delta functions are of particular interest because those 
terms can be integrated with respect, to 7 directly to  yield the terms dependent on 
boundary geometry a t  time t .  We therefore write out a2Gl/a+ in a form that will 
make those terms quite explicit, 

x e-21kidd2k . (7 .1  1 )  1 
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These elements that contain delta functions, which we may write 
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make a contribution to the pressure 

and this may be shown, by substitution for a2G,8/a~2 from equation (7.12) and by 
integration by parts with respect to (yl, 7 )  as appropriate, t,o be equivalent to 

These are the surface terms that we expect to apply in cases in which the boundary 
vibration does not perturb the turbulent field. They have a boundary-layer structure 
characterized by the length scale d, a structure which vanishes when d is formally set 
equal to zero, when equation (7.13) reduces to the corresponding expression that occurs 
in Lighthill's theory, 

so that there is a direct analytical connection between the terms in (7.13) and those 
found in the Lighthill theory. 

The other elements of a2G, /a~2 depicted in equation (7.11) determine the importance 
of surface sources to be evaluated primarily at  times other than the observation time, 
and we must now determine under what circumstances those terms are important. 
We have already arranged the elements of a2Gl /a~2 in a way that will enable us to do 
this. Although that arrangement is not the only one possible, the analysis does actually 
lead to a natural pairing of the form shown, in which each delta function element is 
linked with an element that has a more diffuse time dependence. The main justifi- 
cation for 'pairing off' the delta function contributions in the form shown is that these 
delta function elements lead to surface terms that have a structure very similar to 
those found in Lighthill's theory, in that they are proport,ional to a2&Jat2, a2</ay1 87 
and a2</:lay?. We want to compare the magnitude of each of these terms with the 
source terms that depend on the same surface derivatives, but that are to be evaluated 
at times other than the observation time. We already know the relative magnitudes of 
the two types of terms taken as a whole in the limits of low- and high-frequency 
boundary vibration, so that it makes sense to pair off the individual elements in such 
a way that those elements have the same asymptotic structure as the surface terms as 
a whole. Thus there should be no net contribution from any of the pairs when the 
boundary vibrates at vanishingly small frequency. Conversely, the diffuse time 
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dependence surface terms must vanish a t  high enough frequency, ensuring the pre- 
eminence of the Lighthill type of surface terms in that limit. It was these requirements 
that led to  the pairing of the elements of a2Gl/a~2 shown in equation (7 .1  1) .  The degree 
to which the delta-function element dominates the pair determines the extent to 
which we can regard the turbulence response to boundary motion as an unimportant 
element of the flow, so now consider the extent to  which this is likely to  be the case. 

The element of a2Gl/a72 which characterizes virtual mass effects, 

s(t - 7 )  -"[ 872 24x - yI 1, 
is most easily dealt with because i t  is not subject to any 'pairing'. On convolution 
with LJy, 7) in equation (7 .10)  its contribution to the pressure is simply 

This indicates that  the field induced by boundary acceleration is independent of both 
steady flow and boundary-layer effects. 

The pairing applies only to  the terms operated on by a2/aylLb and 82/ay:! and, since 
the relative magnitudes of the elements of each pair are strongly dependent on the 
length scales and frequencies of the surface motion, we will assume now that small 
amplitude boundary vibration occurs a t  frequency wo and that the boundary movement 
is described by 

t;(y, 7) = t;(y) e-i007. 

Consider first the elements of P G , / W  operated on by a2/ay1a7, which we write as 

and P2 is the element with the more diffuse time dependence (and which we think is 
related to the level of turbulence response), 

When these expressions are substituted into equation (7 .10)  and integrations performed 
by parts with respect to (yl, 7),  their contribution to  the pressure may be written 
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We writ,e this expression in the form of an int,egral with respect to  wavenumber k tis 

k ,  [( - k) P (k, 7) e-iwor d2k d7 
g 2  Im (7.14) 

in order to emphasize the import,ance of length scale in our comparison. The contri- 
butlion to (7.14) from the delta function element Fl is 

(7.15) 

and P2's contribution is 

The extent to which the pressure field is influenced by terms that describe the surface 
geometry a t  times other than the observation time, including times after the obser- 
vation time, is determined by the magnitude of (7.16) relative to (7.15).  If the two are 
of the same order, then we cannot guarantee that turbulence response will be an un- 
important element of the boundary motion-induced pressure. On the other hand, if 
(7.16) is much smaller than (7.15), then the surface source terms to be evaluated a t  the 
observation time are the most important, and under those conditions there is no 
reason to suppose that turbulence response is an important element of the flow, 
because surface terms to be evaluated at  times other than the observation time, and 
which might on causal grounds call for a turbulence response, are negligible. 

The comparison, which should be a t  arbitrary k, involves the ratio of the 
integrands in (7.16) and (7 .15) ,  i.e. 

u: k2, ( 1  + 2e-2lkil d )  ( 1  - e-zlkll d )  

4 
_-  

[((I)" - U1PkJ2 + (~,ap~l)zl 
or, in non-dimensional form: 

1 K: (1 + 2e-2;"') ( 1  - e-2lK1) - _  
4 [(Q, - P K A 2  + ( a P K 1 ) 2 1  * 

The non-dimensionalizing variables are the flow's characteristic length and time scales, 
d and d/Ul. K = kd;  R, E w,dlUl. 

At R, = 0, this ratio has the value 

- & ( I  + 2e-2'"1), 

so that turbulence response terms could then be very important. They are potentially 
even more so a t  R,, = P K ~ ,  when the phase speed of the surface wave elements and those 
of unstable waves on the 'vortex sheet' coincide. Then the ratio is 

( 1  + 2e-21Kl) 
( 1  + e-2lK1) ' 

- 

At higher Strouhal numbers Q,, the ratio reduces progressively, and has the limiting 
form 

-__ K' (1  + 2e-2i"i) (1 -e-21"1), 
4ng 
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which confirms the intuitively plausible result that when the surface waves are a t  
high Q,, or more correctly a t  high phase speed I Q, /@l ,  there is little scope for turbu- 
lence response. 

In  a similar way, the term-pair operated on by a2/ayT consists of a delta-function 
element, 

(7 .17 )  

from the diffuse time-integral. The ratio of the integrands, (7 .18 )  divided by (7 .17) ,  of 
these expressions in non-dimensional form is now 

1 K ~ (  Qo - K ~ )  ( 1  - e-2trl) - 
2 [(Q,-PK1)2+ (4w21‘ 

When Q, = 0, this ratio has the value - 1, which indicates that when the boundary 
is rigid the two types of surface term cancel one another exactly. This confirms the 
anticipated result that the surface terms must vanish on a rigid, non-planar surface, 
the pressure field being given by the turbulence field alone. As Q, is increased to the 
value 0, = P K ~ ,  the ratio is again - 1, which suggests as before a strong turbulence 
response. The ratio is actually zero when !2, = K ~ ,  which indicates that  these turbu- 
lence-response-related surface terms have no role to play when the boundary supports 
waves whose phase speed equals the velocity of the steady flow remote from the 
boundary. At high enough Strouhal number, the ratio again tends to zero, this time 
like 

The behaviour when Q, and K~ have opposite signs is of course less interesting, 
because those elements correspond to  waves that propagate upstream, and they are 
inevitably less well coupled to the flow’s instabilities. But the asymptotic behaviour of 
the various term pairs discussed above at  both zero and infinite Strouhal number is 
the same. 

It is only when the surface motion is a t  high Strouhal number, or, strictly, when the 
phase speed of the surface wave elements is high in comparison with the free-stream 
velocity of the flow, that we can confidently interpret the surface terms in a way that 
is uncomplicated by turbulence response. In  this limit, the boundary pressure may be 
written down very simply, as in equation ( 7 . 9 ) :  
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In this form the surface terms are exactly analogous to those encountered in previous 
extensions of the Lighthill theory, but they now incorporate the effects of a rudi- 
mentary boundary layer. 

8. The dynamics of a baflled piston vibrating beneath a boundary layer 
As an illustration of the implications of this result, we use it to estimate the im- 

pedance of a baffled, spring-mounted piston vibrating beneath a turbulent boundary- 
layer flow. The linearized potential problem has already been considered by Ffowcs 
Williams & Lovely (1975), who concluded that the main effect of flow was associated 
with the suction on the piston as it protrudes from the boundary. If the suction were 
below that necessary to cancel the spring stiffness, the effect of flow would be to 
reduce the resonance frequency. But, if it  exceeded that value, flow would induce the 
instability and flutter of the piston. Unfortunately, Ffowcs Williams & Lovely were 
unable to offer a very accurate estimate of the suction reliazable in practice because 
they argued that it would be determined by boundary-layer effects. The analysis of 
that problem then, is well suited to our new flow modelling. 

We start from the full expression for the surface pressure, which we integrate over 
the piston face to deduce the piston force. First we determine the minimum Strouhal 
number for negligible turbulence response. We find that this is approximately 2, and 
in what follows we assume that the oscillation takes place at at  least this value of the 
Strouhal number. 

Although the finite boundary-layer scale does indeed limit the piston force, we find 
that this is not the sole, or even the most important, boundary-layer effect. There are 
other features which simply cannot be anticipated from a potential modelling which 
neglects the boundary layer’s existence and it is only in the limit of very large piston 
radius that there is no significant difference between the predictions of the two 
theories. We find that, for pistons whose ratio of radius a to boundary-layer scale d 
is less than about 5, the mean flow ‘suction’ on a piston standing proud of its baffle 
is actually a compression, so that the difference between the situations with and 
without the boundary layer is not just one of degree. In the potential flow with slip, 
the surface pressure, and therefore the piston force, is dominated by what is actually 
a steady flow effect: the abrupt changes in boundary geometry induce large local 
variations in surface velocity and correspondingly large surface pressures. But with a 
boundary layer, these steady flow effects are absent, and instead the surface pressure 
is simply that required to drive an oscillation of the mean flow momentum back and 
forth in unison with the boundary movements, momentum which is only established 
at  some distance away from the boundary. The difference is significant enough to 
change the expected sign of the flow-induced force, with the result that a piston which 
has a ratio of piston radius to boundary-layer scale below a critical value does not 
flutter. On the contrary, flow increases its resonance frequency. 

We would not expect our estimate of the force, or of the geometrical ratios at  which 
the changes occur, to offer more than a general guide to the real situation. Neverthe- 
less, reports do indicate that the resonance frequency of a single, baffled Helmholtz 
resonator does rise in the presence of a mean flow past the orifice, and by an amount 
consistent with what we would anticipate from our vortex sheet modelling of the flow. 
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8.1. The piston force 

The surface consists of a circular piston set in an infinite, plane, rigid baffle 

We allow for an arbitrary piston shape 7 so that later we can determine how sensitive 
the results are to the piston geometry. The surface pressure,p(s, t ) ,  is given by equation 
(6.1), with a2G,/a72 as in equation (7.11). The piston force, J' ( t ) ,  is the integral of 
p(x, t) over the piston face: 

C(x,t) = r(lxl)H(a- Ixl)$(t). 

F ( t )  = p(X,t)H(a- Ixl)d2X 
S m  

= IW TH(a - I x 1 ) d3y d7 d2x + I + FF + FII. 

T is written for the 'turbulent' volume terms. As before, I is the (virtual mass) x 

acceleration of the piston, 

It is unaffected by flow. FF is the flow-induced piston force proportional to the piston 
displacement a t  the observation time, 

a2C x H ( u  - 1x1) -2 (y, t )  d2Xd2y. 
ay1 

PU2 1 

FF = -$jW [ (4dz+ Ix-y12)B-(1Gd2+ Ix-y12)f 

(8.1) 

FH is the component which depends primarily on the piston displacement a t  t'imes 
other than the observation time, 

say. Since we believe that the ratio of FIT to FF is a measure of the importance of 
turbulence response induced by piston movement, our first task is to quantify the 
relative magnitudes of FF and FH as a function of Strouhal number. We now do that 
for the particular case of the sharp-edged, flat-topped piston. 

8.2. The minimum Strouhal number for  negligible turbulmce response 
We rearrange equation (8.1) in the form 

2 a< 
1x1 8% 

S(a-  \XI)-?- 2 (y,t)d2xd2y, 
1 

(4d2 + 1 x - y I 2)1 - ( 1 6d2 + 1 x - y I 2, 8 
FF = '2 jm [ 

. .  
(8.2) 

define cosy = y,/IyI, cos(O+y) = x, / /x(  and write equation (8.2) as 

PU2 * 2n 2n 1 2 
FF' = I0 I,, [[4d2+r2+a2-2arcos0j~ -[16d2+r2+a2-2arcos0]~ 

x ar cos 0 C O S ~  y (a&%) dr dO dy,  

1 2 
[4d2 + r2 + a 2 - 2arcos 014 - [ 16d2 + r2 + a2 - 2arcos 014 

x ar cos 0 -dr ac do, iir 
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where r = IyI is the radial co-ordinate nieasured from the centre of the piston. We 
define the typical integral with respect to 0 as 

(see Gradshteyn & Ryzhik 1965, pp. 389, 948, 937 and 905). K and E are complete 
elliptic integrals of the first and second kind respectively, as defined by Gradshteyn & 
Ryzhik, p. 904. 

Consequently, FF is given by 

-2E (( 4ra )')I 
( r  + a)2  + 4d2 

Now, 
Y(r ,  t )  = H ( a  - r )  q5, e--ir,@, 

- a< ( r ,  t )  = - 6(a - r )  q5, e-iOo 
ar 

and Q is the ratio of piston radius to boundary-layer scale, a /d .  
The corresponding expression for FII is 

~:e -2 i~I  J:(&IKI) ( 1  -e-21Kl) (2!2,e-21K1+&~1(1 -2e-21"')) 
FTf = -pU2,a$,Qe- o 

IK I~ [ (Q , -PK~)~+  ( a p K 1 ) 2 i  
Xd2K. (8.3) 

i(*l tlm 
As before, the integral has been written in terms of the relevant dimensionless 
variables. 
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FIGURE 5. The flow-induced force FF on a sharp-edged, baffled piston whose displaced amplitude 
is &e-iwot. The oscillation is at high Strouhal number. This figure shows how E", varies with the 
piston radius, a ,  at fixed boundary-layer scale, d .  FF/pU;de-iwoi $o is plotted against Q( = a / d ) .  

Equation (8.3) collapses to its known asympt,ot,ic limits a t  zero and infinite Strouhal 
number. If R, = 0, FH cancels FP: 

- - - &  

(see Gradshteyn & Ryzhik, p. 709). Also 

F,+O as Q,,-+m. 

For finite values of a,, the relative magnitudes of FF and FH can be deduced from 
figures 5 and 6. Those figures confirm our earlier conclusion that, the higher the 
Strouhal number, the less important turbulence response can be. At Strouhal numbers 
greater than approximately 2, i t  is evident that the response is negligible. I n  what 
follows, we shall restrict the Strouhal number to this and higher values, and so neglect 
FH completely. The piston force then depends only on turbulent volume terms 
apparently uninfluenced by the piston movement, and on terms proportional to t h e  
piston displacement and acceleration at  the observation time. 
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the one depicted in figure 
This term cancels exactly 

at zero Strouhal number 

Qod 
Higher Strouhal numbers - 
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FIQURE 6. The turbulence-response-related surface terms become progressively 
as the piston vibration Strouhal number rises. 

lsss significant 

8.3.  The effect of Jlow on the piston’s apparent mechanical properties 
Fluid on one side of the baffle apparently increases the mass of a sharp-edged piston 
whose geometry is 

(Ffowcs Williams & Lovely 1975), while the flow induces a force of magnitude 

FF = PU%X(&) #(t)  
proportional to the piston displacement. The total fluid-induced force is therefore 

F( t )  = Qpa37+pU3%X(&)# .  a24 
at 

In flow, the mass and spring stiffness, m and K ,  of the piston apparently assume new 
values mu and Ku given by m, = m + $pa3, 

K ,  = K + p U ; a X ( & ) ,  
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though of course mu is independent of the flow velocity. So, if a piston resonates in 
quiescent fluid at a frequency 

K 3  .=( m + $pa3 ) ’ 
it  does so in the presence of flow at a frequency 

w, = (“ + P UZ, .x(Q)) 3 
m + $pa3 

In  their potential modelling, Pfowcs Williams & Lovely noted that the flow-induced 
force would, in practice, be limited by boundary-layer effects to a value 

P u: a9 1n (+), 

where they identify E as the ‘length scale on which our potential modelling has broken 
down’. Our model is consistent with this in the large piston limit, 

FF+pU4a$1n(d/a) as Q = a/d-+co. 

However, figure 5 reveals that this behaviour is characteristic only of pistons which 
have a very large radius or, equivalently, when the boundary layer is very thin. Pistons 
which have more moderate radii support flow-induced forces of the opposite sign. For 
pistons whose geometry is such that Q is less than about 5, the mean flow ‘suction’ 
on a piston standing proud of its baffle is actually a compression. In such cases, there 
can be no instability: on the contrary, flow increases a piston’s resonance frequency. 

At first sight, this appears to be a compIetely unphysical result, but it is less per- 
plexing when one recalls that, although the flow-induced force is proportional to the 
piston displacement, it  is not a steady force: the piston is oscillating at high Strouhal 
number - high enough to ensure that the profile of the adjacent boundary-layer flow 
vibrates back and forth in unison with the piston and without breaking up in doing so. 
Evidently, this mean flow-induced compression is simply the force required to push 
the mean flow away from the baffle. Equally, a suction would be induced on the piston 
were i t  recessed into its aperture, because it could drop below the level of the baffle 
only by pulling the mean flow towards it. It is only when the boundary layer is very 
thin that these features are eclipsed by the blockage effects that completely dominate 
the results from potential theory. 

8.4. Comparison with experiment 
The underlying mechanics which govern the vibration of a spring-mounted, baffled 
piston and that of a single, bamed, Helmholtz resonator (sketched in figure 7) are 
essentially the same. This is useful because it enables us to compare our predictions 
of the flow-dependent behaviour of a spring-mounted piston with published experi- 
mental measurements on Helmholtz resonators. In the Helmholtz resonator, the 
cavity offers a spring-like resistance to displacements at the neck; the virtual mass of 
fluid associated with the oscillatory flow in the neck is the counterpart of the piston’s 
combined real and virtual masses. Thus, just like the baffled piston, the resonator can 
be assigned an effective spring stiffness K and a mass m, and its resonance frequency is 

w, = ( K / m ) t .  
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Piston 
Neck 

FIGURE 7. A Helmholtz resonator - equivalent to a piston on a spring. 
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FIGURE 8. The flow-induced piston force as a function of piston geometry. Here the flat-topped, 
eharp-edged piston result is compared with results for two pistons with rounded edges. All are 
assumed to oscillate at  high Strouhal number. This shows how the force on each piston changes 
as the boundary-layer scale is altered. As d -f 0 (Q  + co), which corresponds to no boundary 
layer, the forces have the limiting forms shown which is in agreement with Ffowcs Williams & 
Lovely (1975). 

In  the presence of flow, we would expect the analogy to hold, provided that the 
resonator orifice radius is not so large in comparison with the boundary-layer scale 
that there is a major flow interaction with the orifice. (Such an interaction would 
involve the vortex sheet shed at  the orifice lip.) The fluid in the cavity and neck can 
then be thought of as a set of marked particles whose boundary with the external flow 
defines the shape of an equivalent 'piston ', the motion of that defining the behaviour 
of the resonator under flow. However, since we have no idea of that piston's precise 
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shape, we must first establish how sensitive the mean-flow-induced force on a typical 
piston is to the specific piston geometry chosen. 

Ffowcs Williams & Lovely showed how important edge geometry was in the potential 
problem by considering pistons of varying edge 'roundness '. We have calculated the 
corresponding forces in our vortex sheet analogy for the cases considered by them, 

and the results are given in figure 8. From this figure, it is evident that, although the 
level of the flow-induced force is different for each piston, as it is in the potential 
problem (due not only to the different edge geometries, but also because each piston 
displaces a different volume of fluid, the volumes being in the ratio 1 : a:+), the force 
changes sign at  approximately the same value of Q for all three pistons. The sign of 
the force is not at  all sensitive to the precise piston geometry. We can therefore 
consider the effect of flow on the Helmholtz resonator with the confidence that, what- 
ever the exact shape of the marked particle boundary, it has a negligible effect on the 
sign of the force and only a minor one on its magnitude. 

There has been much experimental work on the flow-dependent acoustic properties 
of h e r s  ever since their importance was drawn attention to by Meyer et al. (1958). 
Mechel's (1960) work shows that many possible effects exist in a given flow and that 
systematic study of any one of them is difficult. Different experimental techniques 
abound in the literature, ranging from the measurement of sound attenuation in ducts 
and subsequent inferences about the surface impedance (Mechel 1960), to measure- 
ments in individual orifices (e.g. Panton & Miller 1975). In  choosing experimental 
results therefore we must select those which can be interpreted unambiguously. We 
must also c o n h e  our attention to tests on single, baffled resonators or, at any rate, 
arrays sparsely populated with holes, since the response of any given orifice is deter- 
mined by the geometry of the array (Ffowcs Williams 1972). 

Experiments in which the resonance frequency is measured as a function of the 
flow velocity are probably among the least susceptible to ambiguous interpretation. 
Furthermore, in such experiments, resonance frequencies do generally rise in the 
presence of flow, which is consistent with theidea of an additional flow-induced stiffness 
such as we have just found. It is therefore of interest to determine whether the para- 
meter ranges in these experiments were such that we could have anticipated the results 
from our theory. There are two immediate questions. How is the length d to be defined, 
and is the Strouhal number high enough to ensure negligible turbulence response? 

The buffer depth must be closely related to the thickness of the physical boundary 
layer that we are trying to model. At first sight, one might imagine that d should be set 
equal to the boundary-layer thickness, 6, defined, for example, as the distance from 
the boundary a t  which the mean velocity equals 99 % that of the free stream. But this 
is hardly reasonable, because of the characterically sharp initial rate of increase of 
mean velocity with distance from the boundary in turbulent boundary layers. Where 
the velocity profile satisfies a +-power law, 
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FIGURE 9. A diagram of how we expect to  relate the geometry of our vortex sheet modelling to 
the mean flow profile (taken from Townsend 1976, p. 200) of a typical turbulent boundary 
layer. 6* denotes the displacement thickness. 

(Schlichting 1958), the local mean velocity u reaches half the free-stream value U, a t  
a distance x3 from the boundary less than 1 of 6. Consequently, a modelling based 
on a buffer depth d = 6 would much exaggerate the remoteness of the flow from the 
boundary. 

Our interface must be positioned so that the boundary motion-induced volume 
source terms in expressions such as (4.6) are dominated by elements that  are quadratic 
in the induced velocity field, rather than by linear source elements. Velocity pertur- 
bations that are driven by surface waves long on the boundary-layer scale are approxi- 
mately uniform across the boundary layer, so that the linear source terms that arise 
in regions 1 and 2 of the flow can be made equal and opposite, so that they cancel, by 
setting the interface a t  one boundary-layer displacement thickness, S", above the 
boundary. For shorter surface waves, whose induced velocity field falls away more 
sharply with distance from the boundary, an interface positioned closer to the 
boundary may well be preferable, but we do not expect our analysis to be able to 
handle that type of wave very accurately. Surface waves that are short on the scale 
of the boundary-layer thickness, 6, demand an explicit modelling of the boundary 
layer's profile. I n  our simpler vortex sheet model we must be content with a correct 
treatment of 'long' surface waves so that, rather than define d as the boundary-layer 
thickness 6, we propose to set it equal to the rather smaller displacement thickness 6". 
We think that this definition of the buffer depth is to  be preferred to one that puts the 
interface in the free stream, clear of boundary-layer turbulence, even though it makes 
the requirement we specified earlier that the particle-attached interface should remain 
almost planar more difficult to  justify. 

In  order to carry out an order-of-magnitude comparison between our theoretical 
results and reported experimental vehaviour, we need to specify a relationship 
between 8" and S likely to  be representative of practical situations. For that, we take 
&* = 618, a ratio that actually applies to a boundary layer which satisfies a $th power 
law mean velocity distribution, though in fact is representative of many practical 
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orifice Resonance frequency Buffer 

a (mm) fo(Hz) f ( H z )  (ms-l) d (mm) U ,  a/d O.lpUla Author 
radius No flow With flow U ,  depth w_d K A o w  

4.76 250 

2.54 252 
3-81 238 
5.08 211 
2.54 498 
3.81 472 
5-08 538 

5.0 760 

4.0 1000 

350 

300 
298 
249 
560 
520 
572 

860 

1450 

80 1.4 0.04 3.30 0.77 Anderson (1977) 

30 2.5 0.16 1.02 0.35 Panton & Miller 
0.16 1.52 0.99 (1975) 
0.13 2.03 1.12 
0.30 1-02 0.89 
0.27 1.52 1.25 
0.30 2.03 1.82 

60 2.1 0.19 2.42 0.52 Meyer, Mechel & 

80 2- 1 0.23 1.94 0.54 Mechel (1960) 

Kurtze (1958) 

TABLE 1. Flow across the orifice of a baffled, Helmholtz resonator commonly causes its resonance 
frequency to rise. Our analysis shows that this comes about because the flow effectively increases 
the resonator stiffness, the existence of a boundary layer being crucial to the effect. Column 8 
indicates the ratio of the flow-induced stiffness increase actually observed, KRow, divided by 
our order-of-magnitude estimate for it, O-lpVta. w = 2nf. 

boundary layers. Boundary-layer mean velocity profiles, which determine the relation- 
ship between 6" and 6, are not unique of course, and are quite strongly influenced by 
such parameters as surface roughness, Reynolds number and the pressure gradient 
history of the boundary layer. Such effects will not, however, alter the value of this 
ratio by anything like an order of magnitude, so that setting 86" = 6 should be 
perfectly adequate for order-of-magnitude purposes. A vortex sheet model profile with 
d = 618 superposed on the typical turbulent boundary-layer mean velocity profile 
given by Townsend (1976, p. 260) is illustrated in figure 9. 

Experiments carried out in enclosed vessels can be handled in a similarly straight- 
forward way because of the common features shared by the mean profiles in turbulent 
boundary layers and those in fully developed turbulent pipe flow and in 'two- 
dimensional ' duct flow. In those cases, we set d equal to 12.5 % of the pipe radius and 
distance from duct wall to centre plane respectively. An orifice set in the wall of such 
vessels will only behave like an orifice set in a plane baffle if the orifice radius is not too 
large compared with the distance across the vessel, of course, but in fact this condition 
is quite often satisfied. 

Experimental reports indicate that the relevant ratio a/d is commonly within the 
range 0 to 5. Consequently, for our order-of-magnitude estimate of the effect, we can 
take a mean value for FF valid in that range. That value we take as O*lpU:a$,: 
a cavity spring st<iffiiess K is effectively increased by flow to a value 

This flow-induced 
mentally. In column 

is tabulated. This is 
experimental results 

K + 0*1pu:a. 

stiffness is in fact quite consistent with that observed experi- 
8 of table 1 the ratio 

the apparent increase in cavity stiffness needed to explain the 
Kf low,  divided by the order-of-magnitude estimttt,e of i t  from our 
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theory, so that a value of I implies perfect agreement. As the table shows, the sign 
and order of magnitude of the effects are unmistakably correct, and this despite the 
fact that the experimental Strouhal numbers are somewhat lower than the minimum 
value we specified for no significant turbulence response. 

9. Conclusions 
Because Lighthill’s theory of aerodynamic sound does not explicitly recognize the 

existence of a boundary layer, its ability to account for mean flow effects correctly in 
analytical studies of boundary-layer noise is severely restricted. The correct modelling 
of discontinuous boundaries is particularly difficult in the Lighthill framework, which 
invariably emphasizes the surface singularities connected with the discontinuities, 
even though they would not feature in a real situation where a boundary layer cushions 
the mean flow from any abrupt surface irregularities. I n  this paper we have described 
a modelling which recognizes the existence of a boundary layer explicit!ly in an exact’ 
analogy between the real flow and one which has a step velocity profile. The mean 
velocity is zero near to  the supporting surface, and is equal to  the mean velocity of the 
real flow beyond a fixed distance from it. 

The boundary layer’s existence is thus recognized in the Green’s function for the 
problem. The constraints which we impose a t  the interface of velocity discontinuity 
in the model give our Green’s function the essential structure of the vortex sheet 
problem. In general, our source terms have the same form as those found in the usual 
aeroacoustic theory in that there are volume terms, taken to characterize the turbu- 
lence-induced pressure, and surface terms, which are assumed to describe boundary 
effects. The main difference is that, because of non-causal elements which have to be 
evaluated in future time, the volume terms, and hence the turbulence field, cannot be 
assumed known independently of boundary movement. That is an assumption implied 
in applications of Lighthill’s theory which our analogy shows cannot be generally true. 
On causal grounds the turbulence must be capable of response to linear surface 
forcing. We suggest therefore that turbulent boundary-layer flows may well respond to 
linear stimulus in much the same way that free jets are now known to do. 

The turbulence response to surface forcing is likely to be most significant when the 
surface motion is a t  low Strouhal number, based on mean flow velocity and boundary- 
layer scale, and may be particularly vigorous when the flow is driven by surface wave 
elements which share the phase speed of unstable waves on the vortex sheet. But, in 
the limit of high surface vibration Strouhal number, the surface terms assume a more 
familiar form. They are then dependent only on the boundary geometry and its rate 
of change a t  the observation time, and in this limit, although the ‘turbulent’ volume 
terms still contain elements to be evaluated in future time, there is no reason to suppose 
that they are perturbed by the surface vibration, so that the assumption usually 
made in Lighthill’s theory (that turbulence and surface movements can be specified 
independently) applies once more. 

Because of the interdependence between surface and volume terms, applications 
of the theory to  boundary-layer flow noise may need to be posed in a novel way, 
although there appears to  be no basic difficulty of principle. Indeed i t  appears that the 
analogy might be used in essentially the same way that similar non-causal jet noise 
analogies are now being used to predict the sound fields radiated by turbulent jets. 
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We conclude the paper with an illustration of our high Strouhal number estimate of 
boundary-layer fluid loading applied to a problem in which previous extensions of 
Lighthill’s theory have failed to predict results which are observed experimentally. 
We estimate the impedance of a baaed piston vibrating beneath a boundary-layer 
flow, which is an appropriate model of a baffled Helmholtz resonator of the type widely 
used in the construction of acoustic liners. Experimentally, the resonance frequencies 
of such resonators are found to rise in the presence of a grazing flow. Existing theory 
predicts that the opposite should be true. Our analogy confirms that the boundary 
layer is responsible for the discrepancy and that a correct prediction of resonator 
behaviour is’obtained once the existence of the boundary layer is recognized. Blockage 
effects, the main features to emerge from the previous modelling, dominate the 
problem when surface features are very large on the boundary-layer scale. But the 
boundary layer is important if the surface features are of a smaller scale, so t,hat in the 
baffled piston problem, provided that the piston radius is not too large on the scale of 
the boundary layer, the flow effectively augments tjhe resonator stiffness. The piston 
can move only by pushing the mean flow away from, or drawing i t  towards, the bafffe, 
and it does so through the cushioning effect of the boundary layer. That layer imposes 
its own complicated character on the problem, a character that we are only beginning 
to understand. 

This work was carried out while M.P. was a Research Student supported by the 
Science Research Council. That support is gratefully acknowledged. 
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